
APPLYING IMAGE MATCHING TO VIDEO
ANALYSIS

THESIS

Adam J. Behring, B.S.

AFIT/GCO/ENG/10-02

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the U.S. Government.

AFIT/GCO/ENG/10-02

APPLYING IMAGE MATCHING TO VIDEO ANALYSIS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Adam J. Behring, B.S.

September 2010

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GCO/ENG/10-02

APPLYING IMAGE MATCHING TO VIDEO ANALYSIS

Adam J. Behring, B.S.

 Approved:

Dr. Gilbert L. Peterson (Chairman) date

LtCol Michael J. Veth (Member) date

Dr. Rusty O. Baldwin (Member) date

jjones
Typewritten Text

jjones
Typewritten Text

jjones
Typewritten Text
//signed//

jjones
Typewritten Text
//signed//

jjones
Typewritten Text
//signed//

jjones
Typewritten Text

jjones
Typewritten Text

AFIT/GCO/ENG/10-02

Abstract

Dealing with the volume of multimedia collected on a daily basis for

intelligence gathering and digital forensics investigations requires significant manual

analysis. A component of this problem is that a video may be reanalyzed that has

already been analyzed. Identifying duplicate video sequences is difficult due to

differences in videos of varying quality and size. This research uses a kd-tree

structure to increase image matching speed. Keypoints are generated and added to a

kd-tree of a large dimensionality (128 dimensions). All of the keypoints for the set of

images are used to construct a global kd-tree, which allows nearest neighbor searches

and speeds up image matching. The kd-tree performed matching of a 125 image set

1.6 times faster than Scale Invariant Feature Transform (SIFT). Images were matched

in the same time as Speeded Up Robust Features (SURF). For a 298 image set, the kd-

tree with RANSAC performed 5.5 times faster compared to SIFT and 2.42 times

faster than SURF. Without RANSAC the kd-tree performed 6.4 times faster than SIFT

and 2.8 times faster than SURF. The order images are compared to the same images

of different qualities, did not produce significantly more matches when a higher

quality image is compared to a lower quality one or vice versa. Size comparisons

varied much more than the quality comparisons, suggesting size has a greater

influence on matching than quality.

v

Table of Contents

Abstract...v

List of Figures..viii

List of Tables...ix

 I Introduction...1
 1.1 Research Goal..2
 1.2 Sponsor..2
 1.3 Assumptions..3
 1.4 Organization..3

 II Related Work..4
 2.1 Image Features...4

 2.1.1 Scale-invariant feature transform (SIFT)...4
 2.1.1.1 SIFT Keypoint Reduction...8
 2.1.1.2 SIFT Match Comparisons...9

 2.1.2 Speeded-Up Robust Features (SURF)...11
 2.1.3 Histogram of Oriented Gradients (HOG)12

 2.2 High-Resolution Stills...14
 2.3 Critical Video Quality...16
 2.4 Hash Techniques...17

 2.4.1 Bloom Filter...19
 2.5 Image Matching..21
 2.6 KD-Tree..22

 2.6.1 KD-Tree construction and Matching...25
 2.7 Random Sample Consensus..26

 2.7.1 RANSAC Model Matching..26
 2.8 Summary...28

 III Methodology..30
 3.1 Datasets..30
 3.2 Matching with SIFT...31
 3.3 Matching with SURF..32
 3.4 Matching with Bloom Filters..32
 3.5 Matching with kd-trees..34
 3.6 Run Time Metric...35
 3.7 Accuracy Calculating..35
 3.8 Size and Quality Comparison Metric...36
 3.9 Summary...36

vi

 IV Results..38
 4.1 Bloom Filter...38
 4.2 Run Time Testing...39
 4.3 Accuracy...41
 4.4 Size Comparison...44
 4.5 Quality Comparison...46
 4.6 Summary...48

 V Conclusion..50
 5.1 Future Work...51

Bibliography...53

vii

List of Figures

Figure 1: Image pyramid example...5

Figure 2: Quality check example [8]...12

Figure 3: Group of Pictures structure...15

Figure 4: GOP Enhancement order..17

Figure 5: Bloom filter insertion example...20

Figure 6: Bloom filter collision example...20

Figure 7 : Sample output from SIFT...33

Figure 8: Sample output from autopano-sift..34

viii

List of Tables

Table 1: Image groups and number of images in each group..31

Table 2: Image groups and number of images in each group..32

Table 3: Bloom filter hash values..38

Table 4: Matching time taken for the 125 image set...39

Table 5: Matching time taken for the 298 image/video set...40

Table 6: Accuracy for 125 image set using the kd-tree with and w/o RANSAC..............41

Table 7: Accuracy for 298 image/video set using kd-tree with and w/o RANSAC.........43

Table 8: Statistics at different sizes and 90% quality with SIFT.......................................44

Table 9: Statistics at different sizes and 90% quality with SURF.....................................45

Table 10: Statistics at different sizes and 90% quality using kd-tree with and w/o
RANSAC...46

Table 11: Statistics at different qualities and a 1600x1200 size with SIFT.......................47

Table 12: Statistics at different qualities and 1600x1200 size with SURF........................47

Table 13: Statistics at different qualities and 1600x1200 size using the kd-tree with and
w/o RANSAC..48

ix

APPLYING IMAGE MATCHING TO VIDEO

ANALYSIS

 I Introduction

Due to volume, intelligence and forensic analysts may reanalyze a video that has

been previously analyzed. Performing the identification of duplicate video sequences can

be difficult because of different video sizes and qualities. Furthermore, video may have

even been analyzed previously by another analyst. With no personal exposure to the prior

analysis, the analyst would not even know it was already analyzed.

The National Center for Missing and Exploited Children (NCMEC) keeps lists of

hash values of known child pornography images and videos [1]. The lists are

disseminated among law enforcement agencies to help identify victims. The Cait series is

a series of images often found in child pornography cases. There are 7617 hash values

from the 2009 NCMEC list of the Cait series.

Even though having the hash value is strong evidence to show an image is

pornographic, every small change in the image causes that hash value to change. Image

matching techniques can aid in identification of suspected images by matching image

features, which can tolerate small changes, to known child pornography .

Image matching algorithms, such as Scale Invariant Feature Transform (SIFT) [2]

and Speeded Up Robust Features (SURF) [3], generate keypoint files from a video or

image for later retrieval by an analyst to efficiently search for repeated video sequences.

1

Possible data structures for storing keypoints are kd-trees [4][5] and Bloom filters [6][7].

Details to consider for a video matching system include the matching algorithm

run time, the order the images are compared, and the accuracy of the matching methods.

 1.1 Research Goal

The goal of this research is to further the knowledge and methods used in

image matching as it pertains to intelligence analysis and forensic investigations.

This research determines if a new video has already been examined or

anything new has been introduced that needs to be analyzed. This can reduce the

manpower currently taken to analyze new videos that really do not need it. The scope

of this research can also be expanded to law enforcement, who examines videos of

crimes take from a variety of devices.

• Determine if applying data structures (Bloom filters [6][7], kd-trees [4][5])

benefit the matching process in the form of accuracy and speed

• Determine the impact of image size and lossy compression quality on the

matching process

 1.2 Sponsor

This research supports the Air Force Research Laboratory (AFRL),

Communications Exploitation Branch. AFRL leads the discovery, research and

development of information processing techniques by exploiting advanced technologies

to intercept, collect, locate, track and process both covert and overt raw multi-sensor data

for communications Intelligence.

2

 1.3 Assumptions

All of the images in the first dataset of 125 images are assumed to have come

from the same source camera. Likewise all the images from the second dataset of 298

came from the same source video. There were no comparisons or testing done

between the two sources. The 102 keypoints selected for the keypoint reduction was

based on [8]. This number was chosen through trial and error. The autopano-sift

software [5] was designed for panoramic stitching and not for image matching in

general.

 1.4 Organization

Chapter II provides background information on image feature generation

algorithms (SIFT, SURF, HOG), image matching techniques, hashing techniques and

data structures (Bloom filter, KD-tree). Chapter III presents keypoint reduction

methods, KD-tree generation and RANSAC model matching. Chapter IV describes

the data sets, tests used and the results from the testing. This chapter also discussed

the accuracy of the algorithms, computation time and quality and size variation

comparisons. The final chapter discusses conclusions and future work.

3

 II Related Work

This section reviews previous work related to image and video matching. It

discusses matching algorithms and the extraction of high-resolution stills from video

and critical video quality. Hashing methods, used to quickly determine if matches

exist in the database of previously examined images/videos, are reviewed and

discussed.

Image features generated by the Scale-Invariant Feature Transform (SIFT) and

the Speeded-Up Robust Features (SURF) algorithms are discussed. Once the features

are generated they will be added to a data structure. Storing the features in a data

structure allows for faster comparisons. The data structures discussed include Bloom

filters [7] and kd-trees [5]. Finally, previous research on image and video matching is

discussed. Including extraction high-resolution stills from videos and the critical

video quality.

 2.1 Image Features

Image features are pieces of information such as edges and contrast extracted

from images for computer vision applications. Features are calculated differently

depending on the algorithm.

 2.1.1 Scale-invariant feature transform (SIFT)

The SIFT algorithm [9] performs image recognition by transforming images

into local feature vectors called keypoints. Keypoints are invariant to translation,

scaling, and rotation, and partially invariant to illumination changes.

4

The algorithm generates a large number of keypoints, roughly 1000 for a

512x512 pixel image. Given such a large number of distinctive keypoints, the

algorithm can match scenes and objects with a high probability [2]. The algorithm has

four major stages.

Figure 1: Image pyramid example.

 The first stage looks for locations that are the maximum or minimum of the

difference-of-Gaussian function. This function enhances a grayscale image, the

maxima and minima of which are used to generate a feature vector. An image

pyramid is built to determine maxima and minima pixels. The pyramid consists of the

smoothed and resampled image at each level. An example of this is in Figure 1. Since

the 2D Gaussian function is separable, its convolution with the input image can be

efficiently computed by applying two passes of the 1D Gaussian function, below, in

the horizontal and vertical directions [2]

g x = 1
5

e−x2 /22
. (1)

5

The first image, A, is computed using the Gaussian function with =2 . The

Gaussian function is applied again to produce a smoothed new image, B. The

difference-of-Gaussian function is found by subtracting image B from image A. The

pixels in the difference-of-Gaussian image are compared to their 8 immediate

neighbors and their 9 neighbors in each neighboring pyramid scale level. If the pixel

is a maxima or minima compared to its 26 neighboring pixels then it is selected as a

potential keypoint.

Next, keypoints are chosen based on measures of their stability, that is a model

fit to their location and scales [2]. To determine if the potential keypoint is stable

enough each scale level of image A is processed to extract the gradients and

orientations using

M i j=Ai j−Ai1, j 
2Ai j−Ai , j1

2

Ri j=atan2Ai j−Ai1, j , Ai , j1−Ai j
(2)

where Ai j is the i, jth pixel, Mi j is the gradient magnitude, and Ri j is the orientation.

The image is subjected to affine projections, contrast and brightness changes, and

addition of noise. The keypoints in the original image can be predicted in the

transformed images from the knowledge of the transform parameters. The stability of

the keypoints to image transformation is determined by the percentage of keypoints in

the first image and with matching keypoints in the transformed image. These

keypoints are in areas of high variation. Orientations are assigned to the keypoints

based on the gradient of the image. Finally, gradients around the keypoints are

6

measured and transformed into a representation that can specify shape distortions and

changes in illumination [2].

To match two images, the keys from each image are compared to every key

from the other image to find matches. Normally, a single keypoint is matched to a

large set of features. If the image is cluttered, many of the matches will be false

positives. By identifying subsets of keypoints that correspond between images and

their location, scale, and orientation, correct matches can be found [2]. Each subset of

3 or more corresponding features of an object and its orientation is tested further. A

least-squares estimate is made to approximate the object's pose. Any other keypoints

consistent with this pose are identified, and outliers are discarded. Finally, a detailed

computation is made of the probability that a particular set of keypoints indicates the

presence of an object. Object matches that pass all these tests are correct with high

confidence.

Images featuring an indoor environment can increase computational time while

decreasing the complexity of the SIFT keypoints [10]. Images from indoors include

walls and corners. Floors and ceilings, because of their low contrast uniform texture,

rarely generate many SIFT keypoints. Assuming that the indoor images experience

little view point rotation then the keypoints from the walls will not rotate. The

algorithm can be sped up by omitting three of its steps, the calculation of keypoint

orientation, the generation of additional keypoints at locations with multiple dominant

orientation and the alignment of the keypoint descriptor to the keypoints orientation

[10].

7

The SIFT algorithm has been expanded using principal component analysis

(PCA) [11]. The PCA-SIFT algorithm modifies the fourth stage in the SIFT

algorithm, resulting in a key point representation that is simpler, more compact, faster

and more accurate [11]. A 41x41 patch is extracted at the given scale, centered over

the keypoint and rotated to align its dominant orientation to a canonical direction. The

algorithm then computes an eigenspace to express the gradient images of the patches.

The gradient is determined for a given patch and a compact feature vector is derived

using the eigenspace and the gradient image vector. The keypoint is much smaller

than the normal SIFT keypoint.

Comparison between PCA-SIFT and SIFT used a dataset of 30 images

containing 10 household objects. Each object was photographed from three different

angles. An image was then compared to the remaining set using PCA-SIFT and SIFT.

Two points were awarded to the algorithm if the two other images of the

corresponding object were returned in the top three positions. If only one image was

returned in the top three then 1 point was awarded, it was awarded no points for all

other cases [11]. The number points awarded was divided by 60 (the total number of

correct matches) calculate the accuracy. Using this measure SIFT had an accuracy of

43% and PCA-SIFT had 68% for the dataset used. The PCA-SIFT algorithm provided

better matching accuracy and speed for controlled and real-world images [11].

 2.1.1.1 SIFT Keypoint Reduction

The SIFT algorithm generates a large number of keypoints per images.

Reducing the number of keypoints increases the speed in the matching process and

8

reduces the storage requirements. The method of reduction keeps the strongest

keypoints to ensure the best accuracy in the matching process. Keypoint reduction is

achieved with the following Mahalanobis distance function to ensure a good keypoint

spread [8]. Keypoint reduction is an iterative process starting with two points selected

based upon the scale of the detected keypoints. The keypoints are selected by

evaluating each point (xi, yi) using W1Dmahal(xi, yi) + W2σ(xi, yi) to get the highest

value where σ(xi, yi) is the scale, Dmahal is the Mahalanobis distance

Dmahal  xi , y i= xi− yi 
T M x i , yi (3)

at point (xi, yi), M is the covariance matrix, W1 is the weighting of the Mahalanobis

function and W2 is the weighting of the scale of the keypoint [8]. Keypoint selection

continues until the desired number of keypoints are found. In the case of [8], 102

keypoints are selected. This ensures that the selection of keypoints are spread

uniformly and are still strong choices for matching.

 2.1.1.2 SIFT Match Comparisons

Two quality checks are performed to reduce poor keypoint matches during post

processing [8]. Both import the match points from an output file and the match points

(x1, y1) and (x2, y2) are converted into lines representing the match lines. The equation

y = mx+b represents that line with the slope

m=
y2− y1

x2−x1

(4)

9

and the y-intercept, b=y1-(mx2). The intersections of all the match lines are calculated.

If the slopes, m1 and m2, of the two lines are equal they are considered parallel.

Otherwise x is calculated using

x=
−b1−b2

m1−m2
.

(5)

Using (5) the two possible values of y are calculated from y1 = m1x + b1 and y2 = m2 x

+ b1. If the values of y1 and y2 are equal then the point (x, y1) is added to the

intersection list.

Both methods use intersections to determine poor matches that should be

removed. The first method determines bad matches by finding lines intersecting other

match lines in the frame. Figure 2 shows an example of this. A diagonal match line

intersects the other match lines within the image frame. The match is considered poor

and is excluded. Lines that are parallel are kept as good matches, as shown in Figure

7. The second method uses the same initial steps and computes a mean intersect point

from the average x and average y for all the intersect points (x, y)

x=∑
i=0

N xi

N
,and

(6)

y=∑
i=0

N y i

N
. (7)

The average distance from the mean

10

d=∑
i=0

N  xi−x2 yi−y 2

N
 (8)

and standard deviation

=∑i=0

N d i−d 2

N
(9)

of the intersect point are calculated using the average intersect point (x , y).

The distance of the intersect points of each line from the average intersect

point (x , y) is checked against σ. If the sum of the distances greater than σ is 90% or

more of the total number of intersect points associated with the line [8], the line is

marked as bad.

 2.1.2 Speeded-Up Robust Features (SURF)

The SURF algorithm [3] operates in a similar fashion as the SIFT algorithm. It

first finds keypoints or interest points [3]. using a Hessian Matrix. The interest points

are specified by Haar wavelet responses. A 4x4 square is laid over the interest point

and the Haar response is computed for each square. The responses are summed up

over each sub-region and form the first set of entries in the feature vector [3]. The two

image vectors are compared to find matches. The matching process can be improved

by including the sign of the Laplacian (i.e., the trace of the Hessian matrix) [3] to

distinguish between bright blobs on dark backgrounds and the reverse. Only features

with the same type of contrast are compared in the matching stage. The interest points

11

of this algorithm are scale and rotation-invariant, like the SIFT algorithm.

 2.1.3 Histogram of Oriented Gradients (HOG)

The Histogram of Oriented Gradients (HOG) [12] are similar to the keypoints

used in the SIFT algorithm, but they are “computed on a dense grid of uniformly

spaced cells and they use overlapping local context normalizations for improved

12

Figure 2: Quality check example [8].

performance” [12]. This algorithm was originally developed for pedestrian detection.

That is, mostly visible people in a relatively upright position. This algorithm has

shown good results applied to infrared images [13] and video streams [14].

 The first step in this process is to compute the gradients of the image. The

gradient is determined by applying two 1-dimensional filters, [-1 0 1] and [-1 0 1] T,

to the horizontal and vertical, respectively. The pixels are organized into square-like

spatial regions called cells. The cell has a predefined size in pixels. Each pixel

calculates a weighted vote for an edge orientation histogram channel based on the

orientation of the gradient [12]. The gradients can be signed or unsigned, meaning the

contrast information that the signs provide is unimportant to the algorithm. Cells are

organized into blocks in a sliding fashion. Which causes the blocks to overlap one

another. The overlapping allows the cells to contribute several components to the

final descriptor vector and significantly improves the performance [12].

Cells are grouped together into larger, spatially connected blocks to normalize

the contrast. Triggs and Dalal [12] explored four normalization schemes, all of which

provided improvement over the non-normalized data. Let v be the non-normalized

descriptor vector, ||v||k be its k-norm for k=1,2, and є be a small constant. The

schemes are then:

13

L2−norm : f = v

∣∣v∣∣222
,

L1−norm : f = v
∣∣v∣∣1 ,

L1−sqrt : f = v
∣∣v∣∣1 .

(10)

The fourth scheme, L2-Hys, is L2-norm with clipping which limits the maximum

values of v to 0.2 and renormalizes.

The most frequent application of HOG descriptors is to identify standing

pedestrians in an image [13].

 2.2 High-Resolution Stills

While these feature generation algorithms operate on still images they can also

be applied to the intra-coded frames (I-frames) of videos in the MPEG format. I-

frames are key frames in an MPEG video, and are full frames, and can be treated

similarly to an image. The other frames are bi-directionally predictive-coded frames

(B-frames) and predictive frames (P-frames) but they do not contain as much

information and are, consequently, not suitable for video matching [15]. The MPEG

format uses a group of pictures (GOP) composed of the three different frames, shown

in Figure 3.

14

Figure 3: Group of Pictures structure.

Matches are made between videos by extracting the I-frames from the GOP

and applying a matching algorithm. There has been some research to enhance the I-

frames taken from videos by integrating the neighboring P-frames and B-frames [15].

The improvement process uses information from the surrounding frames to estimate

the high-resolution information in the I-frame. Enhancing lower quality video using

this method may help produce more accurate key points for the matching algorithms.

With more keypoints more reliable matches can be established between higher quality

and lower quality videos. Introducing more than four or five frames into the high-

resolution enhancement algorithm, however, reduces the quality of the image [15].

The frames directly predicting an I-frame, that is neighboring frames up to the

first P-frame in a GOP down to and excluding the P-frame of the previous GOP, are

used to compute a high resolution video still. The frames that contribute most to the

high resolution still can be seen in Figure 4. If two frames were used to estimate a

high-resolution still, the I-frame and the first provide the most information. If three

15

frames were used then the I-frame, P-frame, and B-frame immediately before the I-

frame should be used.

Once the frames and corresponding motion fields are decoded, each high-

resolution motion field is computed by up-sampling using a cubic B-spline

interpolation [16]. Block matching determines the displacement of a pixel block

within a search region between the two frames and is applied to the two up-sampled

frames. Any inaccurate motion vectors are detected and the corresponding pixel

removed from the video observation model. The high-resolution video still is then

estimated using the decoded frames and subpixel motion fields.

 2.3 Critical Video Quality

Given each video has multiple I-frames and each I-frame has thousands of

keypoints, a system could exhaust available space to store such information. There is,

however, a “sweet spot” between video quality and accuracy that has been dubbed

critical video quality [17]. This has been applied to facial matching and tracking

algorithms, but can also be applied to video matching. During testing facial detection,

bandwidth usage was reduced up to 29 fold [17] using a prototype surveillance system

operating in two modes. When the surveillance system is not detecting faces it

streams low quality video. When a face is detected the system raises the quality of the

video. Thus, the bit rate is reduced between surveillance cameras and the monitoring

stations. This can also be applied to video matching by finding the critical video

quality to reduce storage space without compromising the accuracy of the matching

algorithm. High-resolution stills can improve this accuracy by increasing quality and

16

thus keypoints.

 2.4 Hash Techniques

Hash functions are mathematical functions that take large sets of data as input

and output a smaller set of data. An index to the inputs location is often placed in a

table or array. Hash functions enable fast table lookups to detect similar or duplicate

entries in a large file. Hash functions must be deterministic and provide uniformity

across its output range.

Some hash tables use a single hash function. The input and the resulting value

is the index into the table where that input is stored. The tables are generally linked

lists and provide a fast way to find entries in large datasets like dictionaries or word

lists.

Cryptographic hash functions are used for verification and authentication [18].

These hash functions have several notable characteristics. It is difficult to determine

17

Figure 4: GOP Enhancement order.

the original input given the hash digest as any change in the input results in a large

change in the digest and it is extremely improbable to find two different inputs that

result in the same digest. Regardless of the original input length the message digest

will be a fixed length. These desirable properties lead to cryptographic hash functions

for security tasks. Passwords can be stored securely as their digests. Using a public

key encryption scheme data can be signed to provide authentication or privacy.

Geometric hashing is used in computer vision tasks [7]. First a set of affine

features are extracted from an image using feature algorithms like SURF or SIFT. The

multidimensional hash value is normalized for the space defined by the set of

features.

Bloom filters use multiple hash functions (specific or arbitrary) to determine

and construct a membership table [7]. Inputs are evaluated by the hash functions, the

outputs of which is used as indices in the hash table. The hash output indices are set

to 1 to signify the input is a member of the Bloom filter. A query can be made to

determine if the query is possibly in the table or not. The query goes through the same

hashing process and the output indices are checked if they are set to 1. If all of the

indices are set to 1 then the query may be a member of the Bloom filter, but if any of

the indices are set to 0 then the query is not a member of the Bloom filter. A Bloom

filter does not allow the removal of elements from the filter, only additions.

Furthermore the Bloom filter is a probabilistic hash. That is, there may be false

positives, which correlates to matches of similar but not exactly the same features.

18

 2.4.1 Bloom Filter

A Bloom filter is a simple and efficient randomized data structure that

represents a set and supports membership queries [6]. Bloom filters can give false

positives and the probability of a false positive increase with the size of the data

structure. Even with false positives, the Bloom filter's simplicity, performance and

space efficiency ensure wide use. A Bloom filter is a bit array with all bits initially set

to zero. Multiple hash functions are used for robustness and reduce the likelihood of

collisions in the array. Elements can be added to the set and the set can be queried to

determine if an element is part of the set.

For example, suppose the element x is being added to a Bloom filter as seen on

the left side of Figure 5. Three different hash functions are applied to x, giving the

indices of 3, 5, and 9. The element at those indices in the Bloom filter are set to 1.

The right side shows y being added to the Bloom filter. The three hash functions,

when given y as an input, produce the indices 1, 5, 8. These indices are also set to 1 in

the array.

In a similar fashion it can be determined if an element is contained in the

Bloom filter. The query is hashed and if any of the locations in the bit array are zero

then it is not part of the set. Figure 6 shows how a false positive can occur. Given the

same Bloom filter from Figure 5 containing elements x and y, a query of w with

indices of 1, 5, and 9 will show that each index from query w is one. This however is

a false positive because the indices that are one included in the filter due to elements

x and y. Elements cannot be directly removed from the Bloom filter. However,

19

another Bloom filter can be constructed to contain only the elements one wishes to

remove.

The Bloom filter performance can be improved using the technique in [6].

Bloom filters are simple data structures and any improvement in Bloom filter

operations, translates into an application speed up as well. By modifying the Bloom

filter's construction and evaluation of it's pseudorandom hash functions a

computational reduction can be achieved.

For example, two hash functions, h1(x) and h2(x), can simulate many hash

functions of the form gi(x) = h1(x) + ih2(x), with i being in the range of 0 to k-1 to

generate k hash functions [6]. Using two hash functions in this way does not increase

the false positive rate any more than that of a normal Bloom filter.

Figure 6: Bloom filter collision example.

20

Figure 5: Bloom filter insertion example.

 2.5 Image Matching

Image matching techniques usually involve acquiring keypoint features from

the images in questions and comparing them. These techniques apply to facial

recognition, pattern recognition, background matching [8], digital video forensics [19]

and ballistics matching [20].

Casings from bullets show distinguishing characteristics that tie it to a

particular firearm. The firing, feeding and ejection mechanisms all leave their marks

on the casing [20]. The features are calculated from the test image and indexed into

descriptors that are searchable. Preprocessing includes converting the image to

grayscale and isolating the center, circular region of the breechface, or firing pin. A

derivation [21] of the Kanade Lucas Tomasi equation

=∫∫
W
[J x d

2
− I x−d

2
]

2

w x dx (11)

is used to calculate the dissimilarity, , where W represents two windows, one with

image I and another image J, x = [x, y]T, the displacement d = [dx, dy]T and the

weighing function w(x) is usually set to 1. Good features are located by examining the

minimum eigenvalue of each 2x2 gradient matrix [20]. Prominent features are

selected and stored in a database for comparison to other images. The number of

matching points between the two images measures the similarity.

Feature matching can determine distinct locations from a set of images [8]

which results in a subset of images with the same background that are useful in

21

determining suspect, witnesses or other individuals at a crime scene. This method

generates keypoints to compare two images.

The SIFT algorithm achieved a 81.6% accuracy using unreduced keypoints and

a matching threshold of 140. The accuracy of 81.1% was achieved with reduced

keypoints and a matching threshold of 6 [8]. The SURF algorithm achieved a 78.3%

accuracy when using unreduced keypoints and a matching threshold of between 1351

and 1363. The accuracy of 79.6% was achieved using reduced keypoints and a

matching threshold of 57. The accuracy of 80.8% was achieved with the inclusion of

the comparison test [8]. The SIFT and SURF algorithms performed the best with no

statistically significant change in accuracy [8]. This research however, did not include

the PCA-SIFT algorithm in testing.

Other methods are applied to fingerprints and facial recognition [22].

Fingerprint recognition uses minutiae extraction and pattern recognition. The ridges

are reduced to one pixel width and the minutiae along that ridge are saved. The two

patterns are spatially aligned and an edit distance is computed. This shows the

minimum cost edit operation to transform one minutiae pattern into the other [22].

The facial recognition system uses a feature extraction method with eigenfaces and

fisherfaces. This research also provides a unifying approach for the analysis of any

type of evidence [22] that can be applied to video and image matching for intelligence

and forensics.

 2.6 KD-Tree

First discussed in terms of image and video [4], a kd-tree is a data structure

22

with points in a k-dimensional space. Each non-leaf node can be thought of as a

hyperplane that splits the dimensional space into subspaces. There are number of

methods to determine were the split should occur. The standard split divides the

dimensional space based on which data points have the maximum spread [4]. The

splitting value is the coordinate median of the points in that dimension. The midpoint

splitting method splits the dimensional space through the center and bisects the

longest side of the dimensional space [23]. The sliding-midpoint method attempts a

midpoint split. If all the data points are on one side of the hyperplane then the plane

slides toward the points until it encounters the first of the data points. This leaves the

single data point as a leaf and the splitting recurses on the remaining points [23]. The

points on either side of the hyperplane form the left and right subtrees. The kd-tree

data structure supports adding/removing elements, balancing and searching.

Searching is done using a Nearest Neighbor algorithm. The algorithm starts at

the root node and moves left or right down the tree depending on whether the value is

greater than or less than the current node. The algorithm works its way to a leaf node

and saves that value as the current best or current nearest neighbor. The algorithm

proceeds recursively through the tree comparing the current node with the current

best. If the current node is better than the current best, then that node becomes the

current best. This process continues until the root node is reached and the search is

complete.

For a large number of dimensions, the nearest neighbor algorithm slows down

and becomes inefficient. Modifications can be made to adapt to these high

23

dimensional trees. Keeping track of the best k-nearest neighbors to a point instead of

just one can improve the algorithm when high dimensionality is involved. Another

method is to approximate the nearest neighbor.

The Best Bin First algorithm approximates a solution for the Nearest Neighbor

problem. The algorithm finds the nearest neighbor for a large fraction of queries and

finds a very good neighbor the remaining times [24]. A kd-tree with a low

dimensionality can use the Nearest Neighbor algorithm. A query using Nearest

Neighbor should, with high probability, be within the bin where the query falls, or in

a neighboring bin [24]. The algorithm backtracks using a branch-and-bound search.

During the backtracking stage, branches of the tree can be thrown away if they

represent a space that is further away from the query than current nearest neighbor. In

higher dimensionality there are far more bins to be examined. By acepting an

approximate nearest neighbor the search can be bounded and return the best nearest

neighbor found up to that point.

Approximate match can even be sped up by using multiple randomized kd-

trees or searching hierarchical k-means trees with a priority search order [25].

Multiple randomized trees are constructed using the original kd-tree algorithm [4] and

splitting the data points in half at each level where the data points show the greatest

variance. A single priority queue is maintained across all the trees so the search can

be ordered by increasing distance to each bin boundary [25]. This has increased

search performance up to about 20 random trees. More than 20 trees leads to no

further performance increase or decreases performance.

24

The hierarchical k-means tree is constructed by splitting data points at each

level into K distinct regions using k-means clustering [25]. The algorithm is

recursively applied to the data points in each dimensional plane until the number of

data points is smaller than K. This method has shown a performance increase with

some datasets but suffers from higher build times than randomized kd-trees.

 2.6.1 KD-Tree construction and Matching

The program used for the kd-tree construction and image matching is

autopano-sift [5]. The software was developed for panoramic image stitching, which

puts together a series of smaller images of a larger scene to yield a single panoramic

image. The SIFT keypoints are generated and added to a kd-tree of a large

dimensionality (128). The keypoints are loaded from each image in the set and a

global kd-tree is created containing all of the keypoints. For every point in the tree the

nearest neighbor is approximated using Best Bin First. Matches are grouped into

partitions containing at least three matches then filtered using the RANSAC

algorithm. Control points are created for the remaining matches. The control points,

as seen in Figure 8, are then used to determine what areas in an image matches with

another in the partition. The output of this program is a file that can be processed by

Hugin [26] to perform panoramic stitching, which goes unused in this research. More

importantly, it displays matching features between images and the grouping of

images. The groups of images that match to one another are called components.

25

 2.7 Random Sample Consensus

The RANdom SAmple Consensus (RANSAC) algorithm estimates parameters

from a set of data which contains outliers [27]. The iterative process randomly selects

a subset of data that are hypothetical inliers. The hypothesis is then tested. First a

model is fitted to the hypothetical inliers. All of the other data points are tested

against the model and if a point fits the model well enough, it is considered a

hypothetical inlier. If there are sufficiently many hypothetical inliers then the model is

reasonably good. The model is then tested by estimating the error of the inliers

relative to the model. This process is repeated a fixed number of times. Every time the

model is rejected it is because there are too few points classified as inliers. A new

model is accepted if its error is lower than the currently saved model.

 2.7.1 RANSAC Model Matching

The RANSAC algorithm filters out inaccurate or incorrect feature matches.

For each partition containing similar images a model is fit to determine the geometric

consistency of the matches. The incorrect matches are defined by providing a model

to the algorithm, which fulfills two things [28]. First, the model can be fit using a

small number of input feature matches and secondly, the model can output a fitness

value of a novel match once it has been fit. The amount of testing needed, k, is

determined by

k=w−n f⋅SD k =w−n f⋅1−wn

wn ,

(12)

26

where w is the fraction of points that is known to be correct, n is the number of

elements required to fit the model, SD(k) is the standard deviation of k and f is a

chosen factor. The model provides a mapping of coordinate systems between two

images [28]. A two-dimensional transformation matrix, M, is used as the model. The

matrix fits the model of two image keypoint pairs in two images, I1 and I2. That is,

there is one line in each image, A1 to B1 in I1 and A2 to B2 in I2. The points A1 and A2

are matches, as are B1 and B2. These pairs, with a large probability, w, represent the

same image feature in both images. The process of coordinate transformation is

composed of translating point A2 into the coordinate origin, rotating the line, by

angle α, so that the orientation is the same, scaling of the coordinates, by a scaling

factor s, so the two lines are the same length and finally translating A2 into the

position of A1. The scaling factor is

s=∣B1−A1∣
∣B2−A2∣ , (13)

and the transformation matrix is

M =[s⋅cos s⋅−sin  s⋅cos⋅−A2x
−sin⋅−A2y

A1x

s⋅sin  s⋅cos s⋅sin ⋅−A2x
cos⋅−A2y

A1y

0 0 1] .

(14)

The position for every keypoint, P = (x, y), in I2 is used to estimate the

expected position in I1 by multiplying P's homogenous coordinates with the

transformation matrix (M)

27

P '=M⋅P=M⋅[x
y
1] .

(15)

A comparison can be made between the model expected and the actual keypoint

position in I1. The distance, d, is computed using d(P, M, K) = |K - M • P| = |K - P'|,

where K is the actual position of the matching keypoint in I1 and P' is the expected

position. There can be four results from this comparison

• d is small, match is correct. This is the most ideal case.

• d is small, match is incorrect. This case is unlikely, but can occur with

repeating elements, such as a series of windows. There are mechanisms in

place to make this occurrence unlikely. The quality of the match takes into

consideration the distance to the second-best match as well as the best match.

If the second best match is a good match, that is two features matching to one

feature,then it is likely to be a repeating feature and is discarded [28].

• d is large, match is correct. This occurs with moving objects, where the

features are matched correctly but the object has moved within the frame.

These cases are discarded.

• d is large, match is incorrect. This case is discarded.

 2.8 Summary

The image feature generation algorithms discussed include Scale Invariant

Feature Transform (SIFT), Speeded-Up Robust Features (SURF) and Histogram of

28

Ordered Gradients (HOG). Each algorithm calculates image features in a particular

way. Preprocessing videos or images using high resolution still extraction or critical

video quality techniques may increase the usability of smaller videos and images of

lesser qualities. With these techniques, lower quality videos and images may produce

stronger features to use with matching. Using data structures, such as Bloom filters or

kd-trees, to organize keypoint files may lead to an increase in run time and produces

more accurate results.

29

 III Methodology

This chapter discusses the specifics of the datasets used in testing and presents

the methodology for the matching experiments and how they are measured. Two

datasets are used. The first dataset is a series of 125 photos taken from around a home

and computer lab. The second dataset are images extracted from the first 5 minutes of

a video.

Varied methods are used to calculate metrics for each test. The tests being

performed are run time tests, grouping accuracy tests, size and quality comparisons.

 3.1 Datasets

Two datasets are tested. The first is from [8] and includes 119 images with

resolutions of 1600x1200 and 6 images with resolutions of 640x480 from 6 locations.

The locations are a home office, a guest room, a stairwell, a living room, a home

exterior and a computer lab. The home office is further split into two groups because

the two sets of images taken in the home office are taken 180 degrees off from one

another. The images per group is in Table 1. The viewpoints at each location vary

widely in rotation, angle and distance from subject. For the interior images the camera

distance is between 2.75 feet and 11 feet, the rotation varied by approximately ±15

degrees and the camera angle from the subject varied more than ±50 degrees. The

exterior images varied 50 feet with ±10 degrees of rotation and over ±180 cardinal

degree direction change.

The second set of images are extracted frames from the first 5 minutes from

30

the season 13 episode 16 of Good Eats entitled "American Classics VII: Don't be a

Chicken of Dumplings". The frames were extracted using the ffmpeg program [29].

The first two images from the set were of a black screen and not used because of the

absence of any features. The remaining 298 images have a resolution of 656x368. The

images contain the upper torsos of one to three people in front of different

backgrounds with the exceptions of title screen and two maps. The image groups,

classified by the background scene, are the flag, the kitchen, the telephone, the

bookshelf, the title screen, the first map and the second map. The breakdown of

images per group can be seen in Table 2.

Table 1: Image groups and number of images in each group.

Group Number of Images
Home Office 1 38
Home Office 2 14
Computer Lab 27

Outside 32
Guest Room 3

Stairwell 3
Living Room 8

 3.2 Matching with SIFT

The SIFT software [30] uses the algorithm described in Section 2.1.1. A batch

file is used to convert the JPEGs to a Portable Gray Map (PGM) filetype. The SIFT

software creates keypoint files from each PGM and a MATLAB® program reduces

the keypoints to 102. Another batch file cycles through the keypoint files comparing

31

each one to all of the others. The batch file saves the matched points to a text file and

creates an image file showing which of the features in the images matched. An

example of this can be seen in Figure 7.

 3.3 Matching with SURF

The original SURF software, discussed in Section 2.1.2, was implemented by

Herbert Bay [31]. The MATLAB® implementation of the SURF matching was

implemented by D. Alvaro and J.J. Guerrero. Images are converted to a PGM format

and a batch file generates the keypoint files. MATLAB® reduces the keypoints for

each file to 102 and performs the matching. Image files similar to the SIFT output are

saved showing what features in each image are matched. Text files are also saved

with the number of features matched between each image pair.

 3.4 Matching with Bloom Filters

The Bloom filter implementation [7] is a simple C program that runs from the

32

Table 2: Image groups and number of images in each group.

Group Number of
Images

Flag 28
Kitchen 136

Telephone 3
Bookshelf 81

Title Screen 10
Map 1 24
Map 2 16

command line. This implementation of a Bloom filter uses two arbitrary hash

functions and has a size of 2500000. It parses the input my lines and calculate the

hashes of each line. Input is provided by an external file, such as a word list. The

Bloom filter was constructed and queries can then be made. If a query was possibly in

the Bloom filter then query would be returned and printed to the screen. If the query

was not part of the Bloom filter then nothing was printed to the screen. For testing,

the keypoint file were provided as input to the Bloom filter.

 3.5 Matching with kd-trees

The kd-tree data structure is implemented through autopano-sift [5]. This C

33

Figure 7 : Sample output from SIFT.

program performs both keypoint file generation and image grouping using two

different commands. The kd-tree is constructed during the image group portion of the

process. There is an option to downscale the images prior to keypoint generation. The

default action is to double the size of the images and then find keypoints. This default

option was used in all of the testing.

The matching portion of autopano-sift groups similar images together for

panoramic stitching. An example of the output showing the features that match is in

Figure 8. The option to turn RANSAC on and off was used for run time testing. For

the remaining tests RANSAC was left on and the pre-filter data was taken from the on

screen output. The maximum number of matches can also be set. This is the number

of matches that will be saved once grouping is done. The default of 16 was left on.

Data was again taken from the on screen output for tests that required the total

number of matches found.

For the accuracy testing the full dataset is input to autopano-sift while only

two images are used as input for size and quality testing.

34

Figure 8: Sample output from autopano-sift.

 3.6 Run Time Metric

The time taken to complete the matching process was measured for each

matching method. The times for SIFT and SURF are broken down into step of

matching, keypoint generation, keypoint reduction and matching. The kd-tree is

broken down into keypoint generation and matching/grouping. The kd-tree does not

use reduced keypoints. The kd-tree is run twice, once with RANSAC on and once

with it off. This test is run with both datasets.

 3.7 Accuracy Calculating

For kd-tree testing the percentage correctly grouped is the proportion of

images from the same location that are in the largest component for that location. For

example, there are 10 total images of an office. After autopano-sift groups the images,

the largest component containing images of the office only contained 8 of them. The

percentage correctly grouped together would be 80%, 8 divided by 10. The other 2

images from the office are in their own two separate components, not grouped with

any other images.

If the largest group of office images only contained 1 image, meaning the other

9 images are in 9 other components each containing a single office image, then the

percentage correctly grouped is 0%. Every image in this case is in a group with just

that single image not matched to any other images in the office group. This test is run

with both datasets.

 3.8 Size and Quality Comparison Metric

35

Testing for size and quality is performed in the same manner. A subset of 30

images is chosen. For size testing each image is resized to 1600x1200, 800x600,

400x300 and 200x150. The quality of the images stays at 90%.

For quality testing each image is saved at a JPEG quality level of 90%, 70%

and 50%. The size of the images stays at 1600x1200.

Three tests are run using each matching method (SIFT, SURF and kd-tree) for

size and quality. RANSAC is left on for the kd-tree and the on screen output displays

the both the data before RANSAC filtering and after filtering. During testing each

size is compared to every other size and each quality is compared to every other

quality. The images are only compared to themselves at different sizes and qualities.

The average number of features matched and the standard deviation is

calculated. The sizes and qualities are tested to determine if the difference between

comparisons and their opposites (quality 90% compared to quality 70% and quality

70% compared to quality 90%) is statistically significant. A two-tailed t-test [32]

with a 95% confidence interval is used to determine significance.

 3.9 Summary

Four tests are performed using SIFT, SURF and the kd-tree. These test run

time, grouping accuracy and the influence of size and quality on the number of

features matched. This testing is performed on an Intel Core2 Duo T9500 2.6 GHz

laptop with 3.5GB of RAM.

36

 IV Results

This section covers the research results. This includes Bloom filter

performance, run time results, grouping accuracy of the kd-tree implementation, size

and quality comparison results. These tested the SIFT and SURF algorithms and kd-

tree implementation, with and without RANSAC filtering.

 4.1 Bloom Filter

Bloom filter software [7] is used to build the filter. The Bloom filter

successfully inserted a keypoint file. Trying to query a similar keypoint file did not

yield any useful results because of this the Bloom filter was not used for additional

testing. The keypoint files are from the Home Office 1 group of 125 dataset.

Table 3 compares the hash values calculated by the Bloom filter. Image 1 and

Image 2 are matching keypoints from two similar images. Each row represents a

single keypoint that matches using SIFT. The hashes are not similar enough to return

a match when a keypoint file is queried.

Hash functions are used to construct Bloom filters. Exact matches are simple

to find because they will hash to the same values. Querying for similar matches

however becomes difficult. The small differences in similar keypoints result in large

changes in the hash values. Bloom filters do not function in a way that would result in

matches of similar keypoints.

 4.2 Run Time Testing

The timing results for the 125 image set are shown in Table 4. The timing

37

results of the 298 image set taken from the video are shown in Table 5. The tables

show the amount of time it takes to generate the keypoint files for each method, the

time it takes to reduce the keypoint files and finally the time it takes to perform the

matching. The SIFT algorithm produced, on average, 4474.7 keypoints for the 125

image set and 807.1 for the 298 image set. The SURF algorithm produced, on

average, 2442.4 keypoints for the 125 image set and 275.9 for the 298 image set.

The reason that the keypoint generation for the kd-tree software take so much

longer is because the autopano-sift software, by default, doubles the size of the

images to generate more keypoints. This is resource intensive when starting with large

files to begin with.

Even though the second set contains 298 images, the execution times are

considerably shorter because the size of the images are smaller (656x368) than the

images from the first set (largely 1600x1200). During testing, a set larger than 313

38

Table 3: Bloom filter hash values.

Hash function 1 Hash function 2
Image 1 Image 2 Image 1 Image 2
1046594 1732079 48495 2052890
902123 257266 1163211 192032
348358 2482033 770368 2078818

1869278 1439167 342202 1840872
1768528 1835948 1302820 1968954
535535 440890 1566579 1567470
1106069 1716220 1882970 58061
1636090 2481305 671344 56906

images at a resolution of 656x368 exhausts the memory needed for the kd-tree used

by the autopano-sift program.

Another factor to consider is that SIFT and SURF matching is run using

MATLAB® while autopano-sift grouping is a C implementation. Code optimization

may contribute to the faster or slower run times.

 4.3 Accuracy

The accuracy results, using the calculation discussed in Section 3.7 are shown

in Tables 6 and 7.

The accuracy for the 125 image set using the kd-tree, shown in Table 6, with

RANSAC is 51.2% and 73.6% without. Some of the image groups tested are better

suited for kd-tree matching. Home Office 1 and Home Office 2 are similar scenes

containing the same model of desk with cluttered shelves on opposite sides of the

same room. The kd-tree with RANSAC grouped 78.9% of Home Office 1 image

together but only 31.7% of Home Office 2. Some of the Home Office 2 images ended

39

Table 4: Matching time taken for the 125 image set.

Algorithm Generate
Keypoints

Reduce
Keypoints Matching Total Time

Taken

Average #
of

Keypoints

% of Time
Spent

Matching
SIFT 23 min 1 hr 36 min 4 hr 5 min 6 hr 4 min 4474.7 67.30%
SURF 3 min 15 min 3 hr 29 min 3 hr 47 min 2442.4 92.10%

KD-tree
with

RANSAC
2 hr 36 min N/A 1 hr 11 min 3 hr 47 min 9807.3 31.30%

KD-tree
without

RANSAC
2 hr 36 min N/A 1 hr 6 min 3 hr 42 min 9807.3 29.70%

up being grouped with some of the Home Office 1 images because of the similarities

of the scenes. Home Office 1 is also being grouped before Home Office 2 which

attempts to construct a full panoramic image of Home Office 1 with the following

images from Home Office 2.

RANSAC is spreading the images among too many groups instead of adding

image to groups already made. Autopano-sift views each consecutive image as the

next part of a panoramic image. With RANSAC on it does not make a connection

between office image 1 and office image 5, for example. The first 4 images are

similar enough to be grouped together but office image 5 is just different enough to be

put in a new group.

The Computer Lab images have a low percentage of correct groupings as well.

The Computer Lab heavily featured people that obscured the background scene. The

40

Table 5: Matching time taken for the 298 image/video set.

Algorithm Generate
Keypoints

Reduce
Keypoints Matching Total Time

Taken

Average #
of

Keypoints

% of Time
Spent

Matching

SIFT 9 min 39 min 3 hr 47
min

4 hr 35
min 807.1 82.50%

SURF 1 min 28 min 1 hr 29
min 2 hr 1 min 275.9 73.60%

KD-tree
with

RANSAC
21 min N/A 29 min 50 min 1072.1 58.00%

KD-tree
without

RANSAC
21 min N/A 22 min 43 min 1072.1 51.10%

features that people have and the features that background scenery have are different.

The matching that autopano-sift is doing focuses on background features and with the

background being behind the people produced a smaller grouping.

The Stairwell images had a large variation in position. These variations were

too large for autopano-sift to overcome and match features too. This resulted in each

image of the stairwell being in a 3 groups with only 1 image each.

An increase is seen in the largest groups with RANSAC turned off. Without

RANSAC to filter away some of the outlying feature autopano-sift becomes less

likely to start new groups of images and continue to add to established ones.

The overall accuracy using the kd-tree, shown in Table 7, for the 298 image set

is 40.6% with RANSAC and 46.9% without. The largest detriment to grouping this

dataset is that the majority of the images feature at least on person. The Kitchen scene

had 3 people visibly for some of the images. This is same issued that occurred with

41

Table 6: Accuracy for 125 image set using the kd-tree with and w/o RANSAC.

Group Number of
Images

w/ RANSAC w/o RANSAC
Largest

Component
Percentage

Correct
Largest

Component
Percentage

Correct
Home Office

1 38 30 78.9% 30 78.9%

Home Office
2 14 5 35.7% 12 85.7%

Computer
Lab 27 7 25.9% 12 44.4%

Outside 32 16 50% 30 93.8%
Guest Room 3 2 66.7% 3 100%

Stairwell 3 1 0.0% 1 0.0%
Living Room 8 4 50% 5 62.5%

Total 51.2% 73.6%

the Computer Lab images. A large portion of the background scene is blocked by the

people in them. There is also movement around the scene when the host is present so

not all parts of the scene are visible the entire time.

A similar problem occurs with the Bookshelf images. This scene is a much

closer shot than the Kitchen scene so the host occupies much of the background.

Algorithms for face recognition need to be trained with a large database of

faces because these algorithms were not trained it is difficult to identify facial

features (eyes, nose, mouth) of the people in the scenes [33]. Clothing are other parts

of a person are subjected to the movements of that person. This motion can cause

enough change in the feature for it to not be matched. The motion also causes a

translation of the feature in the 2D space. The translation cause that feature to by

filtered out by quality checking as in Section 2.1.1.2.

The same increase happens with the 298 dataset as with the 125 dataset when

RANSAC is off, albeit a smaller increase.

 4.4 Size Comparison

Regardless of the order of comparisons, the SIFT algorithm produces the same

number of matches for the image size pairs, shown in Table 8.

Half of the time comparing larger images to smaller images produces, on

average, more matches than comparing smaller to larger images using the SURF

algorithm, shown in Table 9. This can be seen with comparisons of 1-4, 2-4, 3-4 and

their opposites.

SURF is not as robust when matching scaled images. The comparisons had a

42

difference of about 20 matches for each. As the scale decreases the SURF is unable to

extract as many features as with larger images.

Like SIFT, the order of comparisons while using the kd-tree shows no

statistically significant differences, with and without RANSAC, shown in Table 10.

Significance was calculated using a two-tailed t-test. If the p-value are less than 0.05,

which correlates to a 95% confidence interval, then the means are significantly

different. Autopano-sift uses SIFT features so it is reason to expect similar results

from SIFT and autopano-sift, as is the case for this test. There is also a small increase

in average number of keypoints matched with RANSAC off. These extra matches

however, may not be good matches. The average matches are rather high in the first

place though so the addition of a few extra keypoints matched would not cause the

images to be grouped separately.

SIFT is a scale-invariant algorithm. That is, scale does not influence the

43

Table 7: Accuracy for 298 image/video set using kd-tree with and w/o RANSAC.

Group Number of
Images

w/ RANSAC w/o RANSAC
Largest

Component
Percentage

Correct
Largest

Component
Percentage

Correct
Flag 28 15 53.6% 17 60.7%

Kitchen 136 50 36.8% 56 41.2%
Telephone 3 2 66.7% 2 66.7%
Bookshelf 81 23 28.4% 29 35.8%

Title
Screen 10 8 80% 8 80%

Map 1 24 12 50% 12 50%
Map 2 16 11 68.8% 16 100%

Total 40.6% 46.9%

features generated from scaled images. SURF is scale-invariant also, but not as robust

as SIFT. The number of SURF keypoints detected per octave quickly decays with

scale [3].

 4.5 Quality Comparison

Like the size comparison tests, SIFT produces the same number of matches

regardless of order, shown in Table 11.

The average number of matches found using SURF, shown in Table 12, are

very close regarding the order of comparison. Testing shows that the differences in

the average number of matches found is not statistically significant.

On average, comparing lower quality image to higher quality, while using the

44

Table 8: Statistics at different sizes and 90% quality with SIFT.

Size compared to Size Average Keypoints
Matched

Standard
Deviation

1 to 2 82.4 4.8
2 to 1 82.4 4.8
1 to 3 65.5 4
3 to 1 65.5 4
1 to 4 56.5 4.9
4 to 1 56.5 4.9
2 to 3 72.1 4
3 to 2 72.1 4
2 to 4 56.1 5.2
4 to 2 56.1 5.2
3 to 4 57.6 6.2
4 to 3 57.6 6.2

kd-tree implementation, shown in Table 13, produced more matches. Although,

testing shows that these difference are not statistically significant.

All three methods show no statistically significant difference in the average

number of keypoints matched. Significance was calculated using a two-tailed t-test. If

the p-value are less than 0.05, which correlates to a 95% confidence interval, then the

means are significantly different. Again, there is a small increase in the average

number of matches for the kd-tree with RANSAC off, but with so many matches

already it is difficult to tell if these extra matches are actually meaningful.

Quality did not make much of a difference in the matching/grouping process.

The actually difference between 90% quality and 50% quality does no provide enough

45

Table 9: Statistics at different sizes and 90% quality with SURF.

Size compared to Size Average Keypoints
Matched Standard Deviation p value

1 to 2 90.6 3.1
0.62

2 to 1 91.1 4.6
1 to 3 84.7 4.7

0.63
3 to 1 85.3 3.7
1 to 4 72.2 5.5

0
4 to 1 52.9 13.2
2 to 3 88.8 3.5

0.25
3 to 2 87.7 3.8
2 to 4 73.4 6.4

0
4 to 2 54.6 14.5
3 to 4 74.5 6.5

0
4 to 3 55.7 12.8

loss in quality for thorough testing. To the human eye, the images appear very close

to the same quality.

 4.6 Summary

Bloom filters because of the hash functions can not be used to match similar

keypoint files. The differences in hash values for similar keypoints are too great to be

matched. The matching process is sped up by organizing keypoints into a kd-tree.

Autopano-sift does take longer to generate the keypoints because it doubles the size

of the images. Grouping accuracy for both datasets experience a decrease when

46

Table 10: Statistics at different sizes and 90% quality using kd-tree with and w/o
RANSAC.

Size
compared to

Size

w/ RANSAC w/o RANSAC
Average

Keypoints
Matched

Standard
Deviation p value

Average
Keypoints
Matched

Standard
Deviation p value

1 to 2 658 183.1
0.87

661.8 183.9
0.87

2 to 1 665.9 187.1 669.7 187.9
1 to 3 203.8 51.9

0.95
207 52.6

0.95
3 to 1 204.6 52.1 206.1 52.5
1 to 4 60.7 17.2

0.18
67.7 18.3

0.94
4 to 1 66.9 18.2 67.4 18.1
2 to 3 260.5 61.8

0.73
261.8 62

0.87
3 to 2 266.3 65.9 264.4 62.1
2 to 4 75.7 19.1

0.99
76.8 19.4

0.88
4 to 2 75.7 19 76 19.1
3 to 4 97.2 22.4

0.95
97.8 22.3

0.96
4 to 3 97.5 21.3 98.1 21.4

compared to previous SIFT and SURF matching research. This can be attributed to

the background in the scenes being obscured by people. This is seen throughout the

298 dataset results where nearly every scene had at least one person in it.

SIFT and the kd-tree show no significant difference in the average number of

keypoints matched. SURF comparisons with the smallest images does show a

significant difference. This is due to SURF inability to handle changes in scale as well

47

Table 11: Statistics at different qualities and a 1600x1200 size with SIFT.

Quality compared to Quality Average Keypoints
Matched Standard Deviation

90%-70% 95.6 3.1
70%-90% 95.6 3.1
90%-50% 93.6 3.1
50%-90% 93.6 3.1
70%-50% 93.5 3.4
50%-70% 93.5 3.4

Table 12: Statistics at different qualities and 1600x1200 size with SURF.

Quality compared to Quality
Average

Keypoints
Matched

Standard Deviation p value

90%-70% 100 1.2
0.58

70%-90% 100.2 1.6
90%-50% 99.3 1.2

0.28
50%-90% 98 6.3
70%-50% 99.5 1.3

0.4
50%-70% 99.2 1.5

as SIFT. All of the methods show no significant in the order of quality matches to a

50% loss of quality.

48

Table 13: Statistics at different qualities and 1600x1200 size using the kd-tree with and
w/o RANSAC.

Quality
compared
to Quality

w/ RANSC w/o RANSAC
Average

Keypoints
Matched

Standard
Dev. p value

Average
Keypoints
Matched

Standard
Dev. p value

90%-70% 4950.1 1618.7
0.95

4950 1619.2
0.94

70%-90% 4977.7 1610.6 4982.5 1611
90%-50% 3809 1280.3

0.93
3811.8 1280.2

0.93
50%-90% 3838.4 1282 3842.9 1281.8
70%-50% 3556.9 1194.9

0.97
3561.3 1194.8

0.97
50%-70% 3544.9 1212 3574.1 1191.3

 V Conclusion

This research shows that using a kd-tree implementation does no worse than

SIFT and SURF in terms of speed. The accuracy tests showed that the kd-tree

implementation grouped the 298 image set with a 40.6% and 46.9% accuracy with

RANSAC on and off respectively and grouped the 125 image set with an accuracy of

51.2% and 73.6% with RANSAC on and off respectively. Previous tests showed just

the SIFT algorithm matched the 125 image set with an accuracy of 81.6% at its best

and 81.1% at its worst. The SURF algorithm had an accuracy of 80.8% at its best and

78.3% at its worst. The autopano-sift program, since it is a panoramic stitcher,

assumes the order in which the images are given to the program is the order they are

in the panoramic series. This is why the accuracy is much lower using the kd-tree

implementation than just the SIFT and SURF algorithms. Some scenes were not ideal

for this method of matching because of the addition of people in the scenes.

The order of comparison in regards to size did not make any difference with

the SIFT algorithm. The algorithm found the same number of matches regardless if a

larger image was being compared to a smaller one or vice versa. The results from

testing the order of comparisons using SURF showed that the order mattered for the

comparisons with the 200x150 size images. In these cases comparing the larger image

to the smaller one produced more matches on average. Using the kd-tree, there was no

statistical difference regarding the order of matches, both with RANSAC on and off.

For the quality comparison the SIFT algorithm found the same number of

matches for each quality pair. The number of matches found when testing quality

49

comparisons using SURF algorithm was not statistically significant. The same is true

for the matching with the kd-tree, the differences in quality comparison order was not

statistically significant.

The kd-tree performs with less accuracy than the stand alone SIFT and SURF

algorithms because of it's panoramic nature. In some cases though it was found to

perform the matching process faster than the other two algorithms. Keypoint

generation takes longer because autopano-sift doubles the size of the images first.

This was implemented to extract more keypoints from the images but so many

keypoints are found in testing that not using this option may produce similar results

with no significant loss to the number of keypoints needed to make correct matches.

The difference in quality between images does not effect the number of matches

found as much as the difference of size when using SURF and not at all with SIFT.

There were large variability with the quality comparison using the kd-tree. Kd-tree

implementation uses unreduced keypoint files, producing many more matches than

software ultimately uses. Unless explicitly configured otherwise, the software selects

the strongest 16 matches by default and uses those.

 5.1 Future Work

Further work can be done in experimenting with different data structures to

store keypoint files to increase accuracy and speed of matching. Another area to

expand this research in is what methods can be used to determine if sections of video

have been added, deleted or modified. Applying preprocessing of images as discussed

in [15] may be useful. Extract higher quality images from a low quality video to

50

increase the number of matches found between videos.

51

Bibliography

1: National Center for Missing and Exploited Children. www.missingkids.com.

2: Lowe, D. G. "Distinctive Image Features from Scale-Invariant Keypoints".
International Journal of Computer Vision. Vol: 60, Page(s) 91-110. 2004.

3: Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. "Speeded Up Robust Features
(SURF)". Computer Vision and Image Understanding. Vol: 110, Page(s) 404-417.
2008.

4: Bently, J. L. "Multidimensional Binary Search Trees Used for Associative Searching".
Communications of the ACM. Vol: 18, Page(s) 509-517. 1975.

5: Nowozin, S. "autopano-sift software". http://user.cs.tu-berlin.de/~nowozin/autopano-
sift/index.html.

6: Kirsch, A. and Mitzenmacher, M. "Less Hashing, Same Performance: Building a Better
Bloom Filter". Random Structures & Algorithms. Vol: 33, Page(s) 456-467. 2008.

7: Hystad, A. "Bloom filter software". http://en.literateprograms.org/Bloom_filter_(C).

8: Fogg, P. N. "Forensic Image Background Matching Using Scale Invariant Feature
Transform (SIFT) and Speeded Up Robust Features (SURF)". Thesis. Air Force
Institute of Technology. 2007.

9: Lowe, D. G. "Object Recognition from Local Scale-Invariant Features". ICCV ’99:
Proceedings of the International Conference on Computer Vision. Vol: 2, Page(s)
1150-1158. 1999.

10: Ledwich, L. and Williams, S. "Reduced SIFT Features For Image Retrieval and
Indoor Localisation". Australian Conference on Robotics and Automation. 2006.

11: Ke, Y. and Sukthankar, R. "PCA-SIFT: A More Distinctive Representation for Local
Image Descriptors". Proceedings of the 2004 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. Page(s) 506-513. 2004.

12: Dalal, N. and Triggs, B. "Histograms of Oriented Gradients for Human Detection".
Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. Vol: 1, Page(s) 886-893. 2005.

13: Bensrhair, A., Broggi, A., Rakotomamonjy, A. and Suard, F. "Pedestrian Detection
using Infrared images and Histograms of Oriented Gradients". Intelligent Vehicle
Symposium. Page(s) 206-212. 2006.

14: Dalal, N., Schmid, C. and Triggs, B. "Human Detection using Oriented Histograms of
Flow and Appearance". European Conference on Computer Vision. Page(s) 428-
441. 2006.

52

15: Chen, D. and Schultz, R.R. "Extraction of High-Resolution Video Stills from MPEG
Image Sequences". Proceedings of the 1998 International Conference on Image
Processing. Page(s) 465-469. 1998.

16: Scultz, R. R. and Steveson, R. L. "Extraction of high-resolution frames from video
sequences". IEEE Transactions on Image Processing. Page(s) 996-1011. 1996.

17: Korshunov, P. and Ooi, W. T. "Critical video quality for distributed automated video
surveillance". In Proceedings of the 13th Annual ACM international Conference
on Multimedia. Page(s) 151-160. 2005.

18: Low, R. M. and Stamp, M. "Applied Cryptanalysis: Breaking Ciphers in the Real
World". Page(s) 193-199. 2007.

19: Chupeau, B., Diehl, E., Lefebvre, F., and Massoudi, A. "Image and Video
Fingerprinting: Forensic Applications". Proceedings of the SPIE. Vol: 7254,
Page(s) 5-14. 2009.

20: Bijhold, J., Geradts, Z., Hermsen, R., and Murtagh, F. "Image Matching Algorithms
for Breech Face Marks and Firing Pins in a Database of Spent Cartridge Cases of
Firearms". Forensic Science International. Page(s) 97-106. 2001.

21: Birchfield, S. "Derivation of Kanade-Lucas-Tomasi Tracking Equation".
http://vision.stanford.edu/~birch/klt/derivation.ps. 1996.

22: Gonzalez-Rodriguez, J., Fierrez-Aguilar, J., Ramos-Castro, D. and Ortega-Garcia, J.
"Bayesian Analysis of Fingerprint, Face and Signature Evidences with Automatic
Biometric Systems". Forensic Science International. Vol: 155, Page(s) 126-140.
2005.

23: Maneewongvatana, S. and Mount, D. M. "It's okay to be skinny, if your friends are
fat". 4th Annual CGC Workshop on Computational Geometry. 1999.

24: Beis, J. S. and Lowe, D. "Shape Indexing Using Approximate Nearest-Neighbour
Search in High-Dimensional Spaces". Proceedings of the 1997 Conference on
Computer Vision and Pattern Recognition. Page(s) 1000-1007. 1997.

25: Lowe, D. G. and Muja, M. "Fast Approximate Nearest Neighbors with Automatic
Algorithm Configuration". VISAPP International Conference on Computer Vision
Theory and Applications. Page(s) 331-340. 2009.

26: D'Angelo, P. "Hugin software". http://hugin.sourceforge.net/.

27: Bolles, R. C. and Fischler, M. A. "Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography".
Communications of the ACM. Vol: 24, Page(s) 381-395. 1981.

28: Nowozin, S. "Image Align Model Used in autopano-sift". http://user.cs.tu-
berlin.de/~nowozin/autopano-sift/matchmodel.pdf. 2004.

53

29: Bellard, F. "ffmpeg software". http://www.ffmpeg.org/.

30: Hess, R. "SIFT software". http://web.engr.oregonstate.edu/hess.

31: Bay, H., Van Gool, L. and Tuytelaars, T. "SURF software".
http://www.vision.ee.ethz.ch/surf/index.html.

32: Student. "The Probable Error of a Mean". Biometrika. Vol: 6, Page(s) 1-25. 1908.

33: Chellappa, R., Phillips, P. J., Rosenfeld, A., and Zhao, W. "Face recognition: A
literature survey". ACM Computing Surveys. Vol: 35, Page(s) 399-458. 2003.

54

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
16-09-2010

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Sep 2008 – Sep 2010

4. TITLE AND SUBTITLE

 Applying Image Matching to Video Analysis

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Adam Jay Behring

5d. PROJECT NUMBER
N/A
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)

2950 Hobson Way
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCO/ENG/10-02

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Air Force Research Laboratory/Multi-Sensor Exploitation Branch
 Mr. Chad Heitzenrater
 525 Brooks Rd.
 Rome, NY 13441
 (315)330-2575
 Chad.Heitzenrater@rl.af.mil

10. SPONSOR/MONITOR’S
ACRONYM(S)

 AFRL/RIEG

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 Dealing with the volume of multimedia collected on a daily basis for intelligence gathering and digital forensics investigations requires
significant manual analysis. A component of this problem is that a video may be reanalyzed that has already been analyzed. Identifying
duplicate video sequences is difficult due to differences in videos of varying quality and size. This research uses a kd-tree structure to increase
image matching speed. Keypoints are generated and added to a kd-tree of a large dimensionality (128 dimensions). All of the keypoints for the
set of images are used to construct a global kd-tree, which allows nearest neighbor searches and speeds up image matching. The kd-tree
performed matching of a 125 image set 1.6 times faster than Scale Invariant Feature Transform (SIFT). Images were matched in the same time
as Speeded Up Robust Features (SURF). For a 298 image set, the kd-tree with RANSAC performed 5.5 times faster compared to SIFT and
2.42 times faster than SURF. Without RANSAC the kd-tree performed 6.4 times faster than SIFT and 2.8 times faster than SURF. The order
images are compared to the same images of different qualities, did not produce significantly more matches when a higher quality image is
compared to a lower quality one or vice versa. Size comparisons varied much more than the quality comparisons, suggesting size has a greater
influence on matching than quality.
15. SUBJECT TERMS
 image matching, video matching, SIFT, SURF, kd-tree

16. SECURITY CLASSIFICATION
OF:

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES
64

19a. NAME OF RESPONSIBLE PERSON
Dr. Gilbert L. Peterson

REPORT
U

ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
(937) 2785-6565, ext 4281; e-mail: Gilbert.Peterson@afit.edu

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	 I Introduction
	 1.1 Research Goal
	 1.2 Sponsor
	 1.3 Assumptions
	 1.4 Organization

	 II Related Work
	 2.1 Image Features
	 2.1.1 Scale-invariant feature transform (SIFT)
	 2.1.1.1 SIFT Keypoint Reduction
	 2.1.1.2 SIFT Match Comparisons

	 2.1.2 Speeded-Up Robust Features (SURF)
	 2.1.3 Histogram of Oriented Gradients (HOG)	

	 2.2 High-Resolution Stills
	 2.3 Critical Video Quality
	 2.4 Hash Techniques
	 2.4.1 Bloom Filter

	 2.5 Image Matching
	 2.6 KD-Tree
	 2.6.1 KD-Tree construction and Matching

	 2.7 Random Sample Consensus
	 2.7.1 RANSAC Model Matching

	 2.8 Summary

	 III Methodology
	 3.1 Datasets
	 3.2 Matching with SIFT
	 3.3 Matching with SURF
	 3.4 Matching with Bloom Filters
	 3.5 Matching with kd-trees
	 3.6 Run Time Metric
	 3.7 Accuracy Calculating
	 3.8 Size and Quality Comparison Metric
	 3.9 Summary

	 IV Results
	 4.1 Bloom Filter
	 4.2 Run Time Testing
	 4.3 Accuracy
	 4.4 Size Comparison
	 4.5 Quality Comparison
	 4.6 Summary

	 V Conclusion
	 5.1 Future Work

	Bibliography

